Как учёные вылавливают чистое золото из морской воды? Добыча золота. Способы добычи золота

Н. В. Перцов, 3. P . Ульберг, Л. Г. Иарочко, П. И. Гвоэдяк, С 3 1 ю4М lЯ

«Ж туманского (7l) Заявнтель

Институт коллоидной химии и химии воды (5Й) СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ВОДЫ

Изобретение относится к коллоидной химии и может быть использова" но для очистки водных дисперсий и сточных вод от взвешенных веществ, в т.ч. высокодисперсного золота, в золотодобывающей и ювелирной промышленностях и на других предприятиях цветной металлургии.

Известен способ извлечения золота из породы при помощи бактерий, который состоит в том, что они переводят золото в раствор, иэ которого оно удаляется ионообменным способом О).

Однако микроорганизмы извлекают золото, находящееся в частице породы, одновременно культивируясь на ее поверхности, при отсутствии последней использование их для извлечения, например коллоидного золота из раствора, не приводит к эффекту, Следствием этого является невозможность использования способа для очень раэбавленных растворов. Способ также очень специфичен, сложен и продолжителен.

Известен также способ очистки сточных и промывных вод, состоящий в фильтрации их через ионообменные коS лонки, в основе которого лежит процесс фиксации ионов металла или соединений металлов в ионной форме, ча-.. ще всего динка, меди или боле дорогих, например золота, частицами ионита (2).

Однако при этом не удерживаются высокодисперсные частицы металлов, и в т.ч. золота, дисперсность которого 200-300А. При пропускании через ионообменник раствора, содержащего золото в ионном состоянии с концентрацией 0,03 r/ë (в виде дицианурата) и коллоидного золота 0,03 г/л в растворе остается золото в ионном состоянии менее 0,001 г/л, в то время как содержание коллоидного золота изме.няется гишь на 10-12Ф. В промывных

3 и сточных водах ювелирных фабрик и других производств остается до

15 мг/л коллоидного золота, которое не может быть удалено существующими способами. Технология ионного обмена предусматривает необходимость проведения стадии регенерации, сопряженной с расходованием значительного количества солей, кислот и щелочей, а также готового продукта - чистой воды. Процент извлечения коллоидного золота составляет 10- 143, а ионного—

Целью изобретения является повышение степени извлечения золота из воды.

Поставленная цель достигается тем, что в воду, содержащую золото в коллоидном состоянии, вводят дрожжи, родов Saccharomyces, или Candida, . или Rodotoru1а, или бактерии Escher i chi a смесь выдерживают предпочтительно 5-45 мин, отделяют дисперсную фазу и извлекают золото. Предпочтительно вводить микроорганизмы в количестве 106-10 кл/мл на 1 мг/мл золота.

Способ осуществляют следующим оЬразом: 30

Используют культуры хорошо известных и применяемых в технологии микроор ra ни змов — дрожжи Sa ccha romyces или Candida, или Rodotorula, или

Escherichia со 11.

Культуры дрожжей выращивают в течение суток на сусло-агаре, а бактерий - на мясо-пептонном агаре, смывают физиологическим раствором (10 4моль/л NaC

Ь» 8 на нефелометре ФЗК-56 кювета 3,055, и светофильтр 6 вводят в водный раствор золота с концентрацией 0,030,24 мг/мл, выдерживают в течение

5-45 мин, затем отделяют дисперсную фазу путем центрифугирования или электроудерживания и извлекают золото, например, сжигая полученную массу. Содержание золота определяют на. Уф-спектрофотометре с помощью калибровочной кривой.

Оптимальное время разное для разных видов микроорганизмов, например для Saccharomyces vini u Candida ,util!s 15 мин, Rodotorulà glutinis—

30 мин, а для бактерий Escherichia

coli - 45 мин, кроме того, способность микроорганизмов к агрегированию с золотом зависит от возраста культуры ° Например для 4-х суточной культуры необходимое время контакта увеличивается по сравнению с 2-х суточной.

Пример 1. К 50 мл сточной воды ювелирной фабрики, содержащей коллоидное золото с концентрацией

0,03 мг/мл добавляют 50.мл суспензии культуры Saccharomyces vini c концентрацией 3 ° 1 0 кл/мл. Время контакта 30 мин. Полученную массу центрифугируют в течение 5 мин при

5000 об/мин, отделяя воду. Содержание золота в последней составляет

0,001 мг/мл. При этом извлекают

1,40 кг золота.

Пример 2. К 50 мл водной дисперсии, содержащей 0,24 мг/мл кол" лоидного золота, добавляют 50.мл суспензии культуры Saccharomyces vlni с концентрацией 3.108кл/мл. Время контакта составляет 45 мин. Суспензию пропускают через ячейку электроудерживания, которая состоит из центральной рабочей камеры и двух электродных камер, отделенных от рабочей целлофановыми мембранами.

Центральную камеру ячейки заполняют гранулированным силикагелем. В рабочей камере создают электрическое поле напряженностью 50 В/см при скорости потока 1,5 мл/мин. По данным

УФ-спектрофотометра происходит полное извлечение (удерживание на силикагеле) дисперсного золота. В таблице представлены сравнительные данные по степени извлечения золота из воды предложенным и известным способами.

Способ позволяет извлекать из водных растворов и сточных вод высокодисперсное золотс практически полностью (на 98-993).

Использование предложенного способа только на одной ювелирной фибрике позволит получить ожидаемый экономический эффект 50-60 тыс. руб. в год, 948897

S C5 а с5 б- о

I5 х бх о х

С1 о к о о.

СР CD CD о о о

° ° м м м а с и

U о с () х с со с

LA сч о о о о о

° ° о о а о

СЛ CA о о о о бб\ СС\ о о о о о ю

О О м м о о

Составитель Г. Лебедева

Редактор М. Товтин Техред М.Надь Корректор Г. Решетник

Заказ 5688/1

Тираж 981 Под пи сное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, N-35, Раушская наб., д. 4/5 филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

Формула изобретения вводят в воду в количестве 10 1О кл/мл на 1 мг/мл золота.

1. Способ извлечения золота из во- 3. Способ по пп. 1 и 2, о т л иды, отличающийся тем, что, ч а ю шийся тем, что воду с с целью повышения степени извлече- микроорганизмами выдерживают в течения, в воду предварительно вводят - we 5-45 мин. дрожжи родов Saccharomyces, или Сап- Источники информации, dida, или Rodotorula, или бактерии принятые во внимание при экспертизе

В 1866 г. один из членов Французской Академии наук обнаружил присутствие ничтожных количеств золота в морской воде. А позднее, в 1886 г., было сообщено, что содержание золота в водах Ла-Манша составляет до 65 мг на 1 т воды.

Известный шведский ученый Аррениус оценил это количество в 8 миллиардов тонн золота. Многие знали об этом сказочном сокровище, о золоте, присутствующем в виде малых примесей в морской воде. Весьма притягательной была мысль - попросту извлекать это золото из моря, а не добывать его тяжелым трудом, как обычно.

На стыке веков в Англии и США делались попытки экстрагировать золото из моря в промышленном масштабе. В 1908 году эту проблему пыталось разрешить акционерное общество под руководством Вильяма Рамзая. Вскоре в изобилии появились патенты по добыче золота из морской воды. Об удачах не было слышно. Все попытки заглохли в самом зародыше из-за очень малого содержания золота, а также присутствия многочисленных сопутствующих солей. Не было такого промышленного способа, который позволил бы отделить золото от сопутствующих веществ, то есть обогатить его и извлечь.

Физикохимик Габер, которому удалось азот воздуха превратить в аммиак, хотел теперь отважиться на попытку извлечь золото из моря.

В начале 1920 года Габер сообщил об этом в кругу своих ближайших сотрудников. В полной секретности совершались приготовления к этому большому начинанию, о котором остальной мир не должен был знать. Более трех лет до лета 1923 года, затратили Габер с сотрудниками, чтобы выяснить самые насущные проблемы: аналитически точно определить концентрации золота в морях и подтвердить эти данные статистически. Содержание золота оказалось невероятно малым. За 50 лет до этого, в 1872 году, англичанин Зонштадт впервые проанализировал морскую воду из бухты Айл оф Мэн и нашел там максимально 60 мг золота на тонну, то есть на кубический метр. Другие исследователи считали, что это значение завышено. Данные колебались от 2 до 65 мг. По-видимому, они зависели от того, в каком месте Мирового океана были отобраны пробы.

Не меньшего труда стоила разработка метода количественного определения золота. Для этой цели Габер предложил микроаналитический метод, который впервые позволял уловить очень малые количества золота. Он использовал способность небольших количеств свинца, осаждаемого из раствора в виде сульфида, увлекать при осаждении все золото, содержащееся в морской воде. После отделения осадка его восстанавливали и переплавкой переводили в свинцовый королек, который содержал золото и, быть может, серебро. Свинец удаляли прокаливанием, микроостаток сплавляли с бурой. В расплаве оставалось зернышко золота, размеры которого уже можно было установить под микроскопом. Из объема шарика и известной плотности золота определялась его масса.

Такой процесс анализа должен был также служить основой производственного варианта для извлечения золота из морской воды. Габер предполагал сначала пропускать морскую воду через грубый предварительный фильтр, а затем, после добавления осадителя, просасывать через тонкий песчаный фильтр. Все эти и последующие операции предстояло проводить в открытом море.

После трех лет работы над проблемой золота Габер уверовал в свое дело: если доверять его анализам, то вода океана содержала в среднем от 5 до 10 мг золота на кубический метр. Пришлось ввести в курс дела судовые компании линии Гамбург - Америка: будет ли рентабельным процесс извлечения золота, если придется на пароходах перерабатывать гигантские количества воды? Результаты были обнадеживающими: добыча нескольких миллиграммов золота на тонну морской воды покроет производственные затраты, а превышающие это количество 1 или 2 мг пойдут в прибыль. Осуществление проекта согласились финансировать такие концерны, как «Предприятие по выделению серебра и золота» во Франкфурте-на-Майне и «Банк металлов». Габер мог создавать свою плавучую опытную лабораторию Он хотел планомерно объехать Мировой океан, чтобы исследовать, где же больше всего золота.

На перестроенной канонерке «Метеор», от которой остался только корпус и которую переоборудовали в «океанографическое исследовательское судно», искатели золота вышли в море в апреле 1925 года. Они должны были возвратиться из своего путешествия в начале июня 1927 года. Циркулируя взад и вперед между побережьями Америки и Африки, экспедиция отобрала свыше 5000 проб воды, которые были отосланы в специальных запломбированных сосудах в институт в Берлин-Далеме. Еще несколько сот проб были получены с других кораблей из бухты Сан-Франциско и с побережий Гренландии и Исландии.

В мае 1926 года в докладе «Золото в морской воде» Фриц Габер впервые открыл тайну и сообщил о шансах получения золота из морской воды. Приведенный им баланс был уничтожающим: «Золота не будет ».

Результаты первых анализов оказались…неверными. Вкрадись методические ошибки, сразу не обнаруженные, которые давали завышенное содержание золота. Слишком велика была вера в классическое химическое пробирное искусство. Вначале не было также навыков по разделению микроколичеств золота и серебра, в результате чего выделялось золото, содержащее серебро.

Профессору Габеру потребовалось длительное время, чтобы найти самые существенные источники ошибок и исключить их. В конце концов, с помощью усовершенствованного метода он мог определить с достоверностью даже миллионную часть миллиграмма (10 -9 г) золота. Совершенно не была учтена возможность занесения микроколичеств золота извне. Золото в виде следов присутствует повсюду: в реактивах, сосудах, посуде. Это - небольшие количества, но их достаточно, чтобы исказить результат микроанализа и привести к нереально завышенным значениям.

В итоге вместо 5-10 мг золота в кубическом метре морской воды Габер нашел лишь тысячную долю: в среднем от 0,005 до 0,01 мг. Только у побережья Гренландии содержание золота возросло приблизительно до 0,05 мг/м 3 . Однако золото такой концентрации можно было найти лишь в воде, полученной после таяния пакового льда. Габер исследовал также золотоносный Рейн, он учитывал тот факт, что еще сто лет назад земля Баден добывала для чеканки своих монет золото на приисках этой реки. Габер нашел в среднем 0,005 мг золота на кубический метр воды. С хозяйственно-производственной точки зрения рейнское золото также не представляло ничего привлекательного. Конечно, с водой Рейна уплывает ежегодно почти 200 кг золота, растворенного в более чем 63 миллиардах кубических метров воды. Золото в концентрациях (1-3)*10 -12 , то есть 3 части золота на 1 000 000 000 000 частей речной воды. Габер не видел возможности для рентабельной переработки столь малых следов золота. Разочарованный ученый считал, что, возможно, где-нибудь в океане и существуют пространства, в которых благородные металлы находятся в концентрациях, благоприятствующих их промышленному использованию. Габер смирился: «Я отказываюсь искать сомнительную иголку в стоге сена ».

Несмотря на множество попыток экстрагировать золото из морской воды, известен всего лишь один случай, когда были получены ощутимые количества этого металла. В связи с работами на заводе по извлечению брома, в Северной Каролине, были проведены исследование возможностей экстракции других металлов, включая золото. В результате переработки 15 т морской воды удалось извлечь 0,09 мг золота, стоимость которого составляет примерно 0,0001 долл. На сегодня это ничтожное количество составляет все то-золото, которое было извлечено из морской воды.

золото месторождение добыча ртуть

Вы можете ознакомиться с изобретениями Николая Егина
Данный сайт остается как память об изобретателе

Установка для добычи золота из воды - «Лента-СДМ»

Способы и устройства для извлечения редкоземельных и драгоценных металлов из воды и различных стоков были опубликованы в журнале (см. журн. «ИР» № 5 2004 г. «Золотые хвосты», «ИР» № 3 2009 г. «Пора море морщить», «ИР» № 5 2011 г. «За драгметаллами с живой водой»). Все предложенные устройства работают на принципе электролизной регенерации ионных фильтров, поэтому носят названия «РИФ-12», «РИФ-24», «РИФ-50».

Исходным сырьем для этих устройств служат мельчайшие частицы, растворенных в жидкости металлов - ионы с размерами молекулярного уровня. Поймать их промывочными лотками, драгами и другими механизмами невозможно, как золотой песок и самородки, поэтому электролизные «РИФы» успешно заняли свою микроэлементную нишу. Для улова средних и крупных частиц драгметаллов техника давно разработана, постоянно усовершенствуется, вот только беда в том, что месторождения вырабатываются, а новых нет. Вместе с тем, существует достаточно распространенная промежуточная форма состояния драгметаллов, например, золота в виде мелких чешуек, размеры которых составляют сотые доли от величины песчинок. Это так называемые мелкодисперсное золото появляется во многих ручьях и речках Сибири и др. регионах при таянии снегов в из верховьях. Стремительные потоки талой воды вымывают из рыхлых горных пород эти драгоценные блестки и несут их в придонных слоях. В чистой воде на мелководье они хорошо видны, но поймать их «РИФами», лотками и драгами невозможно. Для первых они слишком крупные, для вторых — мелкие, поэтому промежуточная ниша добычи мелкодисперсных драгметаллов оказалась пустой.

Николай Егин изобрел и разработал новую технологию - установку для извлечения мелкодисперсного золота в промышленных объемах. Эксперименты показали, что наиболее эффективно на тонкие чешуйки металла оказывают влияние электростатические заряды чешуйки подобно тонкой фольги в конденсаторах собирают на себе заряды и сохраняют их в диэлектрической среде. Поскольку талая вода в ручьях и речках чистая и имеет низкую электропроводность, мы решили воспользоваться этим. Схема устройства для добычи золота из воды изображена на рисунке 1.

Рис. 1. Установка для добычи драгоценных металлов - золота из воды «Лента-СДМ»

В дно реки забили шпильки 1 с пластиковыми роликами 1, через которые пропустили бесконечную ленту 3. Основание ленты изготовили из прорезиненного брезента в котором завулканизировали нити из полимера с упругим ворсом из токопроводящих углеродных волокнистых структур (УВС) с внешней стороны 4. Лента 3 копировала уклон дна реки или ручья с одной стороны и проходила через коробку рекомбинатора 5 зарядов в расположенную у берега. На расстоянии около 1 метра вверх по течению установили вторую неподвижную ленту 6 параллельно первой подвижной ленте 3, привод которой выполнял электродвигатель 7 с редуктором, установленные в коробке рекомбинатора 5 зарядов. Последняя имела заземление и съемную кассету 8 с моющим раствором. Источником тока (блок питания) 9 служил автомобильный аккумулятор, водяной или ветрогенератор на + 24 В с умножителем напряжения 10.

В придонных слоях чешуйки мелкодисперсного золота в турбулентных потоках воды касались волокон из УВС на неподвижной ленте 6 и заряжались до напряжения 200 250 В. Затем проходили 1 метр в воде не успев потерять свой положительный заряд и падали на внешнюю поверхность подвижной ленты 3. Расстояние в 1 метр между лентами 6 и 3 было выбрано опытным путем, так чтобы ленты не разряжались между собой при меньшем зазоре и не терялись заряды на чешуйках золота при большом расстоянии. Поскольку полимерные нити с УВС на поверхности ленты 3 были заряжены от умножителя напряжения 10 отрицательно, то положительно заряженные чешуйки золота под действием сил электростатики (закон Кулона) притягивались, внедрялись в нити и удерживались в них. Диаметр, длина и упругость этих нитей были были выбраны так, что более крупные частицы песка и гальки прокатывались через них не застревая, т.к. Имели большую кинетическую силу и давление воды. Не могло их удержать и достаточно слабое электрическое поле. На мелкие чешуйки золота оптимально подобранное электрическое поле и упругость волокон оказывали доминирующее значение и надежно удерживали их. Электродвигатель 7 с редуктором перемещал ленту 3 со скоростью не более 0,1 м/сек, так, что все золото, собранное на ленте 3 поступало в коробку рекомбинатора 5 зарядов. С помощью роликов лента 3 меняла направление движения на 180 º и поступала в съемную кассету 8 с моющим раствором, который имел высокую электропроводность и гидрофобность. Заземление коробки 5 и кассеты 8 совместно с указанным расположением в них ленты 3 и свойствами моющего раствора полностью снимали статическое электричество с чешуек золота и полимерных нитей с УВС на ленте 3. Кроме того, гидрофобность раствора резко снижала силы поверхностного натяжения между частичками золота и деталями устройства, что полностью устраняло налипание мелких чешуек золота на них. Очищенная лента 3 продвигалась снова в зону улавливания мелкодисперсного золота, а концентрат из кассеты 8 отбирался на переработку.

Устройство «Лента-СДМ» (сбор драгоценных металлов) содержит небольшое количество деталей, простое в изготовлении и эксплуатации, поэтому легко может освоено малыми предприятиями. При достаточно большой концентрации мелкодисперсного золота в воде устройство собирает до 350 400 грамм в сутки при расходе электроэнергии не более 0,1 кВт/час. При малых концентрациях движение ленты 3 целесообразно сделать в импульсном режиме, для этого электродвигатель 7 с редуктором включают к блоку питания 9 через реле времени 11. Промежуток времени между включениями движения ленты 3 выбирают таким, чтобы на поверхности ленты собралось достаточно много мелкодисперсного золота. Путь движения ленты при этом должен быть не меньше длины ленты, находящейся в кассете 8 рекомбинатора 5 зарядов. Все это дополнительно повышает степень очистки ленты от мелкодисперсного золота и снижает расход электроэнергии не менее, чем на порядок.

«Лента-СДМ» может быть использована не только на ручьях и реках Сибири для сбора золота, но и в других регионах России и за рубежом. Мелкодисперсное состояние металлов и минералов достаточно распространено в рыхлых горных породах по всему миру. Более того, при правильном подборе электростатических и механических параметров конструкции «Лента-СДМ» способна выполнять промышленную добычу целого ряда редкоземельных и цветных металлов из морской воды, имеющей высокую электропроводность. Устройствами, аналогичными «Ленте-СДМ» отдельные фирмы успешно добывают уран из морской воды. Можно применить новую технологию и для различных производственных целей в химической, медицинской, пищевой, нефте — газовой и др. отраслях хозяйства. Способ и устройство патентуется, имеется ряд «НОУ-ХАУ».

Все представленные на сайте изобретения имеют авторские свидетельства на изобретение, чертежи и конструкторскую документацию. Автор – Николай Егин.

Уран, золото, литий - в соленой воде растворены миллиарды тонн ценного сырья. Раньше процесс извлечения полезных веществ из воды был необычайно трудоёмким. Теперь исследователи собираются, наконец, извлечь этот клад из морских пучин.

16 05 2016
14:18

В океанах хранятся приблизительно четыре миллиарда тонн урана и десятки тысяч килограммов золота

Море это золотой рудник. Во всяком случае, если вы знаете, где нужно искать. Обычно один литр морской воды содержит всего несколько миллиардных долей грамма золота. Но недавно исследователи из Германии и Исландии обнаружили кипящий золотоносный источник: на исландском полуострове Рейкьянес. Там, концентрация золота в полмиллиона раз выше, чем в обычной морской воде.

Не только этот драгоценный металл, но и другие ценные вещества в огромных количествах растворены в морской воде. В море покоятся коло четырех миллиардов тонн урана. Этого достаточно, чтобы удовлетворять энергетические потребности человечества в течение 10000 лет. Или, например, литий: Этот редкоземельный химический элемент используется для батарей в планшетах или смартфонах. Все больше и больше стран инвестируют в изучение того, как можно использовать океаны в качестве нового источника ресурсов. Но нужно понимать, что вылавливание сырья из воды задачка далеко не тривиальная.

В Германии Центр океанических исследований имени Гельмгольца (Geomar) в Киле участвовал в открытии месторождений золота в горячих источниках в Исландии. "Измеренные концентрации достаточно точно указывают на значительные месторождения золота", − говорит Марк Ханнингтон, руководитель рабочей группы по разведке морских ресурсов Geomar.

Команда считает, что геотермальные резервуары полуострова Рейкьянес содержат, по меньшей мере, 10000 кг золота. Исследователи предполагают, что растворённое в морской воде и циркулирующее в подземных скальных расщелинах золото должно было накапливаться в течение длительных периодов, прежде чем оно покинуло подземный резервуар, а затем в очень высокой концентрации вылилось через скважины.

Золотые микробы

"Это золото может появляться в жидкостях в виде тонкодисперсных наночастиц золота", − предполагает Дитер Гарбе-Шенберг из Университета Киля. Так называемое нано золото пользуется спросом во многих областях техники. Его особые поверхностные свойства могут, например, обеспечить более эффективное управление химическими реакциями в катализаторах.

Но как можно извлечь из воды настолько мелко измельчённое золото, да ещё, чтобы этот процесс был незатратным, простым и экологически чистым? Молодых исследователей из Гейдельбергского университета и из немецкого научно-исследовательского Центра по изучению рака посетила гениальная идея. Для того чтобы заставить золото из раствора выпасть в осадок, они используют свойства специально адаптированных бактерий.

Delftia acidovorans, так называется микроб, который растет только на золотых рудниках. Этот микроорганизм адаптировался к окружающей среде, он отделяет драгоценный металл даже из растворов с относительно низкой концентрацией золота. Исследователи идентифицировали необходимые гены и встроили их в микроб Е. coli, который распространен по всему миру.

Это позволило им повторно извлечь драгоценный металл из золотоносных растворов, которые получаются, например, при извлечении золота из электронного лома. Исследователи подали заявку на патент этих биотехнологических процессов, так как они уже продемонстрировали высокую конкурентоспособность по сравнению с классической химической переработкой золота. Это открытие также может сотворить революцию в сфере добычи золота из моря.

Миллиарды тонн урана

Соединенные Штаты, тем временем, оказывают содействие крупной научно-исследовательской программе по добыче урана из океанов. Огромные растворенные в воде запасы происходят из природных минералов, которые были вымыты в море в ходе выветривания и других эрозивных процессов. Тем не менее: уран нелегко выловить из воды. Ещё в 80-х годах японские ученые экспериментировали с материалами, которые целенаправленно захватывают и связывают уран из морской воды.

Американцы пытаются сделать этот метод более эффективным. Исследовательский консорциум хочет в буквальном смысле вылавливать уран удочкой. В журнале "Industrial and Chemical Engineering Research" впервые на рассмотрение публики были представлены материалы и описание самого метода. Этот метод, вероятно, сможет уменьшить в три-четыре раза себестоимость добычи урана из моря, и при этом увеличить объёмы добываемого сырья.

"Для того, чтобы обеспечить будущее ядерной энергетики, нам нужно найти экономически жизнеспособный и надежный источник добычи топлива", − объясняет Филипп Бритт, директор программы в Департаменте энергетики США. Метод главным образом разрабатывается на основе двух государственных научно-исследовательских институтов, Национальной лаборатории Ок-Ридж (Oak Ridge) в штате Теннесси и Национальной лаборатории Пасифик Норсвест (Pacific Northwest) в Ричланде.

В качестве "удочек (улавливателей) для урана" служат длинные нити (шнуры) полиэтиленовых волокон. Тонкие, но стабильные волокна специально обрабатывают так, что в процессе часть их молекул преобразуются в амидоксим. Это органическое соединение, состоящее из углерода и азота, является "приманкой" для растворенного в воде урана, так как он предпочтительно создает соединения именно с этим веществом.

Воздействие на окружающую среду

Для того чтобы "поймать" уран, шнуры нужно просто поместить в море, предпочтительно в ту область водных масс, где есть течение и происходит перемешивание. Через несколько недель, ураноносные шнуры можно извлекать. Их помещают в кислотную ванну, где уран высвобождается в виде уранила. Соединение может быть легко извлечено из раствора, а затем его можно без труда обогатить и переработать в уран. Урановая "удочка" без проблем переносит эту процедуру и, по мнению исследователей, может быть повторно использована непосредственно снова в океане.

Сколько урана можно добыть из моря ​​таким способом, уже продемонстрировали тесты в трех различных местах на Западном побережье США, во Флориде и на побережье штата Массачусетс. После 49 дней пребывания в морской воде, шнуры выловили и связали около шести граммов урана на килограмм абсорбирующего материала. Японские исследователи в свое время смогли добиться результата в два грамма урана на килограмм абсорбирующего материала. И при этом пластиковые шнуры японцев должны были оставаться в воде на протяжении 60 дней.

"Решающее значение имеет понимание того, как абсорбирующий материал работает в естественных условиях в морской воде", − говорит Гари Гилл, заместитель директора Национальной лаборатории Pacific Northwest. Потому что в дополнение к максимально возможным показателям добычи урана должно быть гарантировано, что этот метод не оказывает отрицательного воздействия на окружающую среду. "Но мы уже выяснили, что большинство из этих абсорбирующих материалов не токсичны", − говорит Гилл.

Команда уже пять лет работает над усовершенствованием метода. Всё началось с моделирования на компьютере. Программа проверяла, какие из химических групп выборочно улавливают и связывают именно уран. Затем последовали термодинамические и кинетические исследования, которые определили, как быстро уран из воды связывается с тем или иным абсорбирующим веществом и где находится равновесие этой реакции. Весь процесс функционирует только тогда, когда связывается больше урана, чем растворяется.

Литий для батарей

К проекту также были привлечены Китайская академия наук и Японское агентство по атомной энергии (ЯААЭ). В Институте синтеза Роккасё (Rokkasho Fusion Institute), который является частью Японского агентства по атомной энергии, японские исследователи продолжают изучение технических способов добычи стратегически важного сырья из морской воды.

К таким веществам относится литий, металл, который входит в число редкоземельных химических элементов. Он необходим в первую очередь для изготовления компактных литий-ионных батарей, которые сейчас распространены в планшетах, цифровых камерах и мобильных телефонах, а также используются для эффективного хранения энергии в электрических автомобилях.

В то время как известные, доступные месторождения лития в мире оцениваются примерно в 50 млн тонн, ученые подозревают, что в водных ресурсах океанов могут быть растворены 230 миллиардов тонн лития. Тем не менее, сырье встречается только в качестве микроэлемента. Около 150 000 литров морской воды едва ли содержат хотя бы 30 граммов лития.

Но Цуёши Хосино из Института синтеза Роккасё это совершенно не смущает. Ученый только что представил общественности метод, с помощью которого требуемый металл может быть отфильтрован из воды, даже если он присутствует там в очень небольших количествах. Этот метод не требует дополнительного использования энергии, ведь её приносят сами электрически заряженные частицы лития.

В фильтре, состоящем из тонкой мембраны из стеклокерамики, которая обладает литиевой ионной проводимостью, заряженные частицы двигаются от отрицательной стороны к положительной стороне, таким образом, производя электрическое напряжение. "Микропористая керамика пропускает через себя только растворённые в морской воде электрически заряженные частицы лития", − объясняет исследователь. В 72-часовом испытании фильтр достиг доли восстановления, которая составляет около семи процентов.

Исследователи знают, что это только начало. Эксперты из Центра энергетических исследований Великобритании предполагают, что в 2030 году такими методами можно будет получать сырье из моря в коммерческих объёмах, при условии, что цены на золото, уран или литий останутся достаточно высокими.

Сильвия фон дер Вайден.

Добрый день, уважаемый читатель!
Хочу открыть Вам маленький секрет получения ЛЮБЫХ металлов из речной или озёрной воды в любом месте нашей планеты.
Вернувшись в 2015 году из Канады, я за два года провёл несколько экспериментов по адсорбированию золота, платины, серебра, меди и других металлов из речной воды на активированный уголь.

Эксперимент первый.

В сентябре 2015 года я купил пару метров чёрной капроновой ткани (мельчайшая сеточка из которой шьют женские пеньюары). Жена сшила мне из этого материала пару мешочков размером 40 на 60 см. Затем я купил мешок древесного угля для шашлыков и слегка размельчив его до размера спичечного коробка, загрузил в эти два мешочка. Поехал на ближайшую от города, совсем не большую речушку, выбрал тихое, укромное место, где редко бывает кто-либо, обвязал эти мешки капроновой верёвкой, привязал к ближайшей каряге и бросил в воду. Мешки всплыли и не хотели тонуть. Тогда, я развязал их, загрузил в них по нескольку камней в каждый и снова забросил. Мешки утонули.
Ровно через месяц (в начале октября) достал их и привёз домой. Дома достал из этих мешков камни, а сами мешки повесил на балконе для просушки. Через неделю они стекли и полностью просохли. Теперь они стали, приблизительно, в два раза тяжелее первоначального веса. Высыпав этот уголь в ведро, я стал его изучать. Все куски угля были покрыты тёмно-медистым иногда с желтоватым оттенком цветом. Затем я взял несколько маленьких кусочков этого угля и стал изучать его под бинокулярным микроскопом. На поверхности было всё - и грязь со дна (потому-как мешки лежали на дне) и какие-то микроскопические частицы металла и чёрт знает что.
Дальше я сжёг весь уголь в мангале для шашлыков. Зола была довольно тяжёлая. И месяц проводил химический анализ. Что в нём оказалось? Довольно много меди, золота, платины, серебра, магния, кальция и серы. На остальные химические элементы я анализы не проводил.

Эксперимент второй.

В первых числах мая 2016 года, я начал опять проводить точно такой же эксперимент, но уже с мелким активированным углём, который выписал по почте.
Загрузив в два мешка ровно по три кг. активированного угля, поехал на другую речку, более глубокую и пошире. Вырубил два кола по два метра длинной, накачал резиновую лодку и отошёл на лодке на три метра от берега. Мешки привязал посредине на коротке, практически к стволам кольев (это для того, чтобы они не касались дна, когда напитают воду, а пока сухие не всплыли на поверхность (камни в этот раз не ложил). Надёжно воткнул эти два кола в дно. Макушки кольев оставил чуть ниже поверхности воды. Колья расположил в нескольких метрах друг от друга. За лето несколько раз приезжал и переставлял колья, так-как летом всё время падала вода и макушки кольев обнажались.
Мешки простояли в воде пять месяцев. В начале октября я их достал, отвязал мешки и приехав домой, повесил на просушку на балконе. Вес сухих мешков оказался почти в три раза больше первоначального. Так же, как и в первый раз, сжёг весь уголь и три месяца занимался аффинажем. Результат - медь не высаживал, золота 27 гр., платины 8,5 гр., серебра 93 гр.
Оба эксперимента проводил на территории Карелии. Но всё это можно добывать в любой речке, большой реке или озере по всей территории России.

Думаю, что именно так народы древних цивилизаций добывали все необходимые металлы. Не разрабатывали карьеры, шахты и т.д. Добывали из воды, там где жили, десятки и тысячи тонн золота, серебра, меди, железа и другие металлы.
В любую реку или озеро, загрузив десятки, а то и сотни таких мешков адсорбента в виде активированного угля, можно добывать все металлы, которые Вас интересуют.
Как говорят - всё гениальное очень просто.
С уважением ко всем читателям.

Рецензии

Прочитав пост « Образование месторождений золота», где аккумулирующим веществом назван углерод, образующийся в результате лесных пожаров уголь, хотел было предположить, что набив мешок древесным углем и утопив его весной в устье ручья на котором ведут добычу, осенью можно поднять его с самородками. Да не стал спешить, а оказалось вы уже написали об этом)
Капроновая сетка не заиливается?

Ежедневная аудитория портала Проза.ру - порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

Уход